

NPN Power Silicon Transistor

Qualified per MIL-PRF-19500/315

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This NPN silicon transistor is rated at 5 amps and is military qualified up to the JANTXV level. This TO-111 isolated package features a 180 degree lead orientation.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3749
- Low saturation voltage
- Low leakage current
- Fast switching capable 0.5 μs rise time
- High frequency response
- TO-111 case with isolated terminals
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/315
- RoHS compliant versions available (commercial grade only)

APPLICATIONS / BENEFITS

- Class 3B to ESD per MIL-STD-750 Method 1020
- High frequency inverters
- Converters
- Linear amplifiers
- High speed switching regulated power supplies
- RF power supplies

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Case	R _{eJC}	3.33	°C/W
Collector Current	Ic	5.0	Α
Collector-Emitter Voltage	V_{CEO}	80	V
Collector-Base Voltage	V_{CBO}	110	V
Emitter-Base Voltage	V_{EBO}	8.0	V
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$	P _T	2.0	W
$^{\circ}$ T _C = +100 $^{\circ}$ C $^{(2)}$		30	

Notes:

- 1. Derate linearly 11.4 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C.
- 2. Derate linearly 300 mW/°C for $T_C > +100$ °C.

TO-111 Package

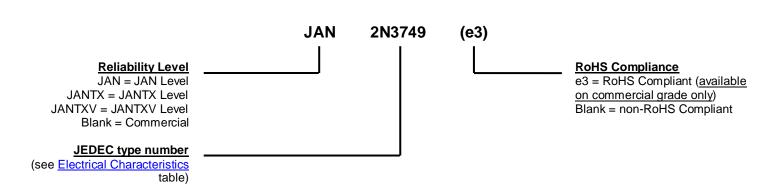
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and **PACKAGING**

- · CASE: Nickel Plated
- TERMINALS: Solder Dip over Nickel Plating. RoHS compliant Matte/Tin available on commercial grade only.
- MARKING: Manufacturer's ID, Date Code, Part Number, BeO
- POLARITY: See Package Outline Drawing on last page
- WEIGHT: Approximately 5.412 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
I _B	Base current: The value of the dc current into the base terminal.				
Ic	Collector current: The value of the dc current into the collector terminal.				
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.				
P _T	Total power dissipation: The sum of the forward and reverse power dissipations.				
V_{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.				
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ T_C = 25 °C unless otherwise noted

Chause ((!	0,	N#!	Marr	1124
Characteristic	Symbol	Min.	Max.	Unit
FF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	M	90		V
$I_{C} = 100 \text{ mA}$	V _{(BR)CEO}	80		V
Collector-Emitter Breakdown Voltage	M	110		V
$I_C = 10 \mu A$	V _(BR) CBO	110		V
Emitter-Base Breakdown to Voltage	1/	8.0		V
$I_E = 10 \mu A$	$V_{(BR)EBO}$	0.0		V
Collector-Emitter Cutoff Current			20	
$V_{CE} = 60 \text{ V}$	I _{CEO}		20	μА
Collector-Base Cutoff Current			0.0	^
$V_{CB} = 80 \text{ V}$	I _{CBO}		0.2	μA
Collector-Emitter Cutoff Current			1.0	
$V_{CE} = 110 \text{ V}, V_{BE} = -0.5$	I _{CEX}		1.0	μΑ
Emitter-Base Cutoff Current	1		0.2	
$V_{EB} = 6.0 \text{ V}$	I _{EBO}		0.2	μA
N CHARACTERISTICS			T	
Forward-Current Transfer Ratio	h	40	120	
$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$	h _{FE}	40 40	120	
$I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}$ $I_C = 5.0 \text{ A}, V_{CE} = 5.0 \text{ V}$		15		
Base-Emitter Voltage Non-saturated $V_{CE} = 2.0 \text{ V}, I_{C} = 1.0 \text{ A}$	V_{BE}		1.2	V
			1.2	•
Collector-Emitter Saturation Voltage I _C = 1.0 A, I _B = 0.1 A	V		0.25	V
$I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$ $I_C = 5.0 \text{ A}, I_B = 0.5 \text{ A}$	V _{CE(sat)}	1.5		'
Base-Emitter Saturation Voltage	.,		4.0	V
$I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$	V _{BE(sat)}		1.2	V
YNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	lh I	2.0	10	
$I_C = 1.0 \text{ A}, V_{CE} = 10.0 \text{ V}, f = 10 \text{ MHz}$	h _{fe}	3.0	12	
Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	40	140	
$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1 \text{ kHz}$	rie	70	140	
Output Capacitance				-
$V_{CB} = 10 \text{ V}, I_{E} = 0, 100 \le f \le 1.0 \text{ MHz}$	C _{obo}		150	pF
WITCHING CHARACTERISTICS	1		1	
Pulse delay time	t _d		60	ns
Pulse rise time	t _r		300	ns
Pulse storage time	t _s		1.7	μS
Pulse fall time	t _f		300	ns

ELECTRICAL CHARACTERISTICS @ T_C = 25°C unless otherwise noted. (continued)

SAFE OPERATING AREA (See Figure below and MIL-STD-750, Test Method 3053)

```
DC Tests
  T_C = +100^{0}C, t = 10 seconds
Test 1
  V_{CE} = 80 \text{ V}, I_{C} = 80 \text{ mA}
Test 2
  V_{CE} = 20 \text{ V}, I_{C} = 1.5 \text{ A}
```

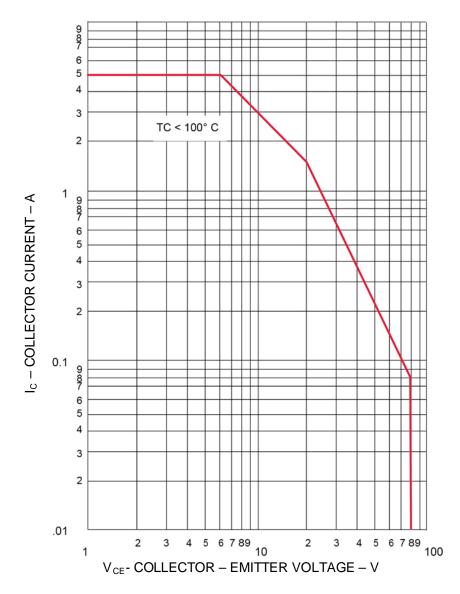


FIGURE 1 Maximum Safe Operating Area

GRAPHS

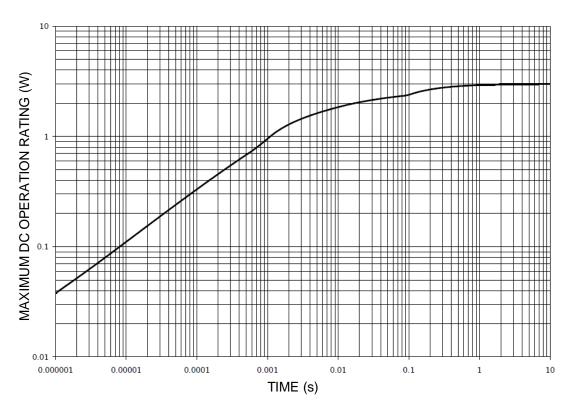
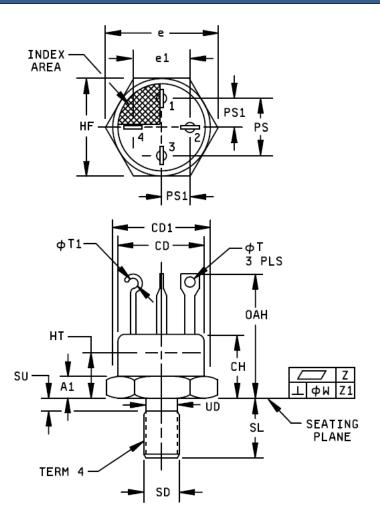



FIGURE 2 Thermal Impedance

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- Terminal 1 emitter; terminal 2 base; terminal 3 collector; terminal 4 - case.
- 4. Chamfer or undercut on one, or both, ends of hexagonal portion is optional.
- The outline contour, with the exception of the hexagon, is optional within cylinder defined by CD1 and HT.
- Terminal 4 can be flattened and pierced or hook type. A visual index is required when the flattened and pierced tab terminal contour (identical to the adjacent terminals) option is used.
- 7. Angular orientation of terminals with respect to hexagon is optional.
- 8. A1 dimension does not include sealing flanges.
- 9. SU is the length of incomplete or undercut threads.
- 10. SD is the outer diameter of coated threads. (Reference: Screw thread standards for Federal Standard H28/1, (FED-STD-H28/1)

Dimension						
Symbol	Inch		Millimeters		Notes	
- ,	Min	Max	Min	Max		
CH	0.0320	0.458	8.13	11.63		
HT	-	0.250	-	6.35	5	
CD	0.318	0.380	8.08	9.65		
CD1	0.380	0.437	9.65	11.10	5	
HF	0.423	0.438	10.74	11.13		
E	-	0.505	-	12.83		
E1	0.180	0.215	4.57	5.46	7	
A1	0.090	0.0150	2.29	3.81	4, 8	
OAH	0.570	0.763	14.48	19.38		
SL	0.400	0.0455	10.16	11.56		
SU	-	0.078	-	1.98	9	
φТ	0.040	0.065	1.02	1.65		
φT1	0.040	0.070	1.02	1.78	6	
SD	0.190-32UNF-2A				10	
Z	-	0.02	-	0.05		
Z 1	-	0.006	-	0.15		