

SG1436 / SG1536

HIGH-VOLTAGE OPERATIONAL AMPLIFIER

PRODUCTION DATA SHEET

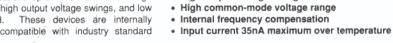
PACKAGE ORDER INFO								
	T _A (°C)	Plastic DIP 8-Pin	Y Plastic DIP 8-Pin	TO-99 Metal Can 8-Pin				
		RoHS Compliant / Pb-free Transition DC: 0503*						
	0 to 70	SG1436M	SG1436Y	SG1436T				
	-55 to 125	-	SG1536Y	SG1536T				
	MIL-STD-883	-	SG1536Y/883B	SG1536T/883B				
	DESC	-	SG1536Y/DESC	SG1536T/DESC				

T PACKAGE (Top View)

Note: Available in Tape & Reel. Append the letters "TR" to the part number. (i.e. SG1536Y-TR) †Peak Package Solder Reflow Temperature (40 seconds maximum exposure) 260°C (+0, -5)

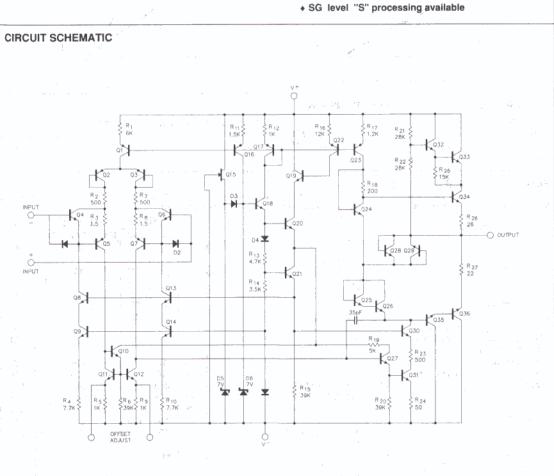
Downloaded from Arrow.com.

UNEAR INTEGRATED CIRCUITS


SG1536/SG1436

HIGH-VOLTAGE OPERATIONAL AMPLIFIER

DESCRIPTION


FEATURES

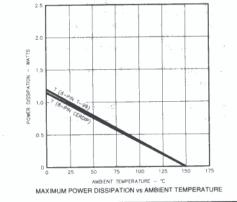
High supply voltage capabilityHigh output voltage swing The SG1536 series of monolithic amplifiers is designed specifically for use in high voltage applications up to ±40V and where high common-mode input ranges, high output voltage swings, and low input currents are required. These devices are internally compensated and are pin compatible with industry standard operational amplifiers.

HIGH RELIABILITY FEATURES -SG1536

+ Available to MIL-STD-883 and DESC SMD

April 1990

SG1536/SG1436


- 38

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage		
SG1536		±40V
SG1436		±34V
Differential Input Signal	±(V+ + V -	3) V
Common-Mode Input Swing	±V*, -(V [*] -	- 3) V
	a war an	

Note 1. Exceeding these ratings could cause damage to the device.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Supply Voltage						
SG1436		±15V				

Note 2. Range over which the device is functional.

ELECTRICAL SPECIFICATIONS

W.A.		1	* I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
r N	3.0			4
SIPATIQ				
E DISS	2.0			
POWE				
	-1.0			. 3 _e
			2.1	1.10

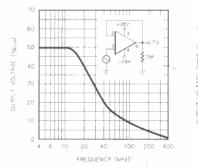
Output Short Circuit Duration $(V^* = |V'| = 28V, V_0 = 0V)$ Operating Junction Temperature Hermetic (T, Y-Package) Circuit Circuit Package) 65° C to 150° C

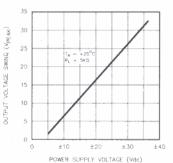
100 CASE TEMPERATURE - *C MAXIMUM POWER DISSIPATION vs CASE TEMPERATURE

125

Operating Ambient Temperature Range (T_J) SG1536--55°C to 125°C

SG1436 0°C to 70°C

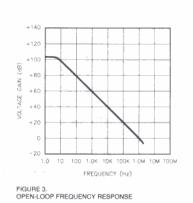

(Unless otherwise specified, these specifications apply for the operating ambient temperature of $T_x = 25^{\circ}$ C, and $V_g = \pm 28$ V. Low duty cycle pulse testing
techniques are used which maintains junction and case temperatures equal to the ambient temperature.)


	Test Conditions	SG1536			SG1436			Units
Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	
Input Offset Voltage	1 1 200 March 1 1 March 1 Street Street and 1 40 1400	-212 ·	2.0	5.0		5.0	10	mV
input Onset Voltage	$T_{A} = T_{MIN}$ to T_{MAX}			7.0			14	mV
Input Offset Current	A MIN CO MAX		1.0	3.0		5.0	10	nA
input Onset Gunent	$T_A = T_{MIN}$	Let be a loss		7.0			14	nA
	$T_A = T_{MN}$	1661.FN		4.5			14	nA
In and Dies Coursest	A T MAX		8.0	20		15	40	nA
Input Bias Current		TSISIAN		35			55	nA
	T _A = T _{MIN} to T _{MAX} Open loop, ≤ 5.0Hz		10			10		MΩ
Differential Input Impedance		DALES OF A	250	BASEBASE		250		MΩ
Common-Mode Input Impedance	f≤5.0Hz	ALC: NOTE:	200			200		1410-9
Common-Mode Input Voltage			105		±22	±25		v
Range (Peak)		±24	±25			100		dB
Common-Mode Rejection Ratio		80	110		70	1 177		V/V
Large Signal Voltage Gain	$R_{1} = 10K\Omega, V_{0} = \pm 10V$	1	200K			200K		
· · · · · · · · · · · · · · · · · · ·	$R_1 = 100K\Omega, V_0 = \pm 10V$	100K	500K	1	70K	500K		V/V
	$\bar{T}_{A} = T_{MIN}$ to T_{MAX}	50K	Sec. all		50K			V/V
Power Supply Rejection Ratio	V constant, $R_s \le 10K\Omega$		15	100	1	35	200	μ٧/\
	V ⁺ constant, R _e ≤ 10KΩ	Beach	15	100	and a	35	200	μV/V
Output Impedance	f ≤ 5.0Hz		1.0			1.0		KΩ
Short Circuit Output Current		网络动物	±17		1.1.1.1	±17		mA
Output Voltage Swing (Peak)	R ₁ = 5.0 KΩ, V _S = ±28V	+22	and the second second		±22			V
Output voltage Swing (Feak)	$R_{L} = 5.0 \text{ K}\Omega, V_{R} = \pm 36 \text{V}$	±30	Cherry Con	100.00	±30			V
	S S S S S S S S S S S S S S S S S S S	1 Characteriza	n se tel sin se	Provide States	1			

SG1536/SG1436

Parameter	Test Conditions	SG1536			SG1436			Units
Palameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Power Bandwidth	$A_v = +1, R_i = 5.0 K\Omega, THD \le 5\%,$	2193 S		12	1223	1.01.0	Alter de	2
	$\dot{V}_{0} = 40V p \cdot p$		23			23		KHz
Unity Gain Crossover Frequency	Open loop	2.1	1.0		No.	1.0	1.00	MHz
Slew Rate	Unity gain		2.0			2.0		V/µs
Phase Margin	Open loop, unity gain		50	4816	S2. 28	50		deg
Gain Margin			18			18	1	dB
Equivalent Input Noise	$A_v = 100, R_s = 10K\Omega, f = 1.0KHz,$	1946	N. Salar	ويتعقبه بروير	0 114.15			Section:
internation - internations, while a comparison of the parameter product of a point simple	BW = 1.0 Hz		50			50		nV/√Hz
Power Supply Current	ner syndwrainer na ganerae findslafer hilferefikion	10. 506	2.2	4.0	and and	2.6	5.0	mA
Power Consumption	$V_0 = 0$		124	224		146	280	mW

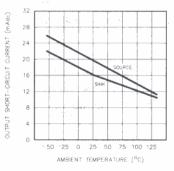
CHARACTERISTIC CURVES



.3.2

2.8

2.4


(NORMALIZED)

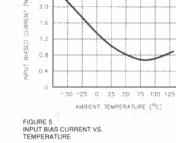

FIGURE 1. POWER BANDWIDTH

FIGURE 2. PEAK OUTPUT VOLTAGE SWING VS. POWER SUPPLY VOLTAGE

PERSONAL PROPERTY AND

7 - 35

Note 1. Contact factory for JAN and DESC product availability. 2. All packages are viewed from the top.

Silicon General • 11861 Western Avenue • Garden Grove, CA 92641 • (714) 898-8121 • TWX: 910-596-1804 • FAX: (714) 893-2570