
# Silicon Dual Schottky Power Rectifier 16 Amp, 150 Volt

Qualified per MIL-PRF-19500/737

Qualified Levels: JAN, JANTX, and **JANTXV** 

# DESCRIPTION

This Dual Schottky rectifier device is military qualified up to a JANTXV level for high-reliability applications. They are hermetically sealed in a common cathode configuration offering very fast switching characteristics compared to fast or ultrafast rectifiers.



TO-257AA Package

Important: For the latest information, visit our website <a href="http://www.microsemi.com">http://www.microsemi.com</a>.

#### **FEATURES**

- JEDEC registered equivalent of 1N7047
- Hermetically isolated TO-257AA package
- Internal metallurgical bonds
- Temperature independent switching behavior
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/737
- RoHS compliant versions available (commercial grade only)

# Also available in:

TO-254AA package

(leaded) 1N7039CCT1

U1 (SMD-1) package (surface mount) 1N7039CCU1

### **APPLICATIONS / BENEFITS**

- Schottky barrier rectifier diodes (dual) for military, space and other high reliability applications.
- Switching power supplies or other applications requiring extremely fast switching and essentially no
- Low forward voltage drop
- High forward surge capability
- Inherently radiation hard >100 krads as described in MicroNote 050

# switching losses.

# MAXIMUM RATINGS @ T<sub>A</sub> = +25 °C unless otherwise noted.

| Parameters/Test Conditions                                                        | Symbol              | Value       | Unit |
|-----------------------------------------------------------------------------------|---------------------|-------------|------|
| Junction and Storage Temperature                                                  | $T_J$ and $T_{STG}$ | -65 to +150 | °C   |
| Thermal Resistance Junction-to-Case (2.3 °C/W maximum)                            | Rejc                | 1.85        | °C/W |
| Working Peak Reverse Voltage                                                      | $V_{RWM}$           | 150         | V    |
| Junction Capacitance                                                              | СJ                  | 350         | pF   |
| Average DC Output Current @ T <sub>C</sub> = +100 °C                              | Io                  | 16          | Α    |
| Non-Repetitive Sinusoidal Surge Current @ $t_p$ = 8.3 ms, $T_C$ = +25 $^{\circ}C$ | I <sub>FSM</sub>    | 120         | А    |

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841

Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

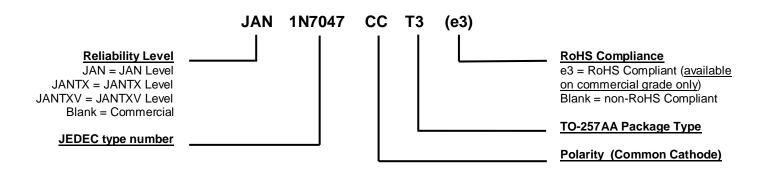
#### MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com




# **MECHANICAL and PACKAGING**

CASE: Nickel plated copper base & 1020 steel frame
 TERMINALS: Solder dipped copper cored 52 alloy plating

MARKING: Alpha numeric

POLARITY: See <u>Schematic</u> on last page
 WEIGHT: Approximately 3.43 grams
 See <u>Package Dimensions</u> on last page.

# PART NOMENCLATURE



| SYMBOLS & DEFINITIONS |                                                                                                                                       |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Symbol                | Definition                                                                                                                            |  |  |  |
| CJ                    | Junction Capacitance: The junction capacitance in pF at a specified frequency (typically 1MHz) and specified voltage.                 |  |  |  |
| I <sub>F</sub>        | Forward current: The current flowing from the p-type region to the n-type region.                                                     |  |  |  |
| I <sub>R</sub>        | Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V <sub>R</sub> . |  |  |  |
| $T_J$                 | Junction temperature: The temperature of a semiconductor junction.                                                                    |  |  |  |
| $V_{F}$               | Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.                          |  |  |  |
| V <sub>R</sub>        | Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.                                                      |  |  |  |



# **ELECTRICAL CHARACTERISTICS** @ T<sub>A</sub> = +25 °C unless otherwise noted

| Parameters / Test Conditions                                                                                                                                  | Symbol         | Min. | Max.                         | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|------------------------------|------|
| OFF CHARACTERTICS                                                                                                                                             |                |      |                              |      |
| Forward Voltage*  I <sub>F</sub> = 8 A  I <sub>F</sub> = 16 A  I <sub>F</sub> = 8 A, T <sub>C</sub> = -55 °C  I <sub>F</sub> = 16 A, T <sub>C</sub> = +125 °C | V <sub>F</sub> |      | 0.91<br>1.13<br>1.02<br>0.94 | V    |
| Reverse Current<br>$V_R = 150 \text{ V}$<br>$V_R = 150 \text{ V}, T_C = +125 \text{ °C}$                                                                      | I <sub>R</sub> |      | 0.5<br>15                    | mA   |

<sup>\*</sup> Pulse test: Pulse width 300 µsec, duty cycle 2%.



# **GRAPHS**

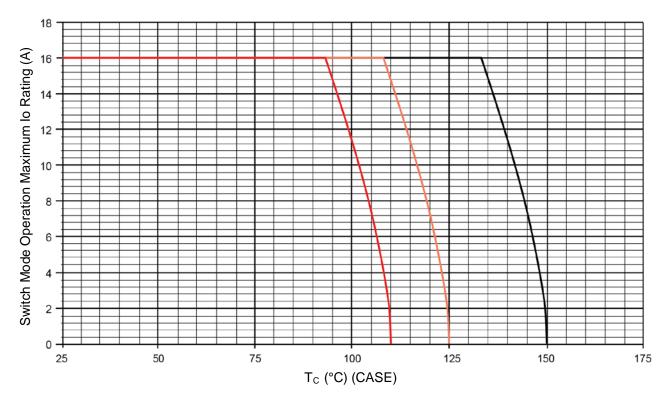



FIGURE 1
Temperature-Current Derating

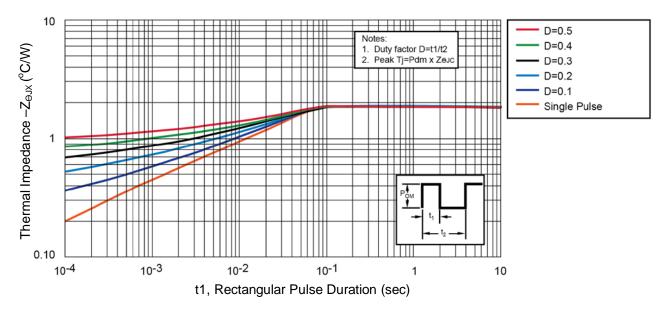
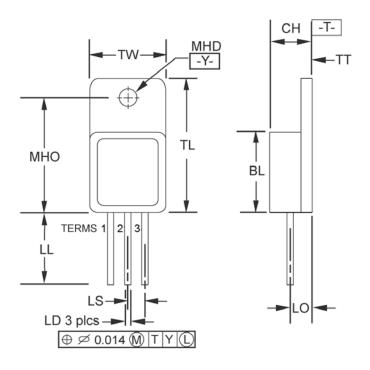
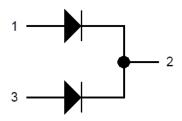




FIGURE 2
Thermal Impedance (for each leg)



# **PACKAGE DIMENSIONS**




|     | Dimensions |       |             |       |  |
|-----|------------|-------|-------------|-------|--|
| Ltr | Inch       |       | Millimeters |       |  |
|     | Min        | Max   | Min         | Max   |  |
| BL  | 0.410      | 0.430 | 10.41       | 10.92 |  |
| СН  | 0.190      | 0.200 | 4.83        | 5.08  |  |
| LD  | 0.025      | 0.040 | 0.64        | 1.02  |  |
| LL  | 0.500      | 0.750 | 12.70       | 19.05 |  |
| LO  | 0.120 BSC  |       | 3.05 BSC    |       |  |
| LS  | 0.100 BSC  |       | 2.54 BSC    |       |  |
| MHD | 0.140      | 0.150 | 3.56        | 3.81  |  |
| МНО | 0.527      | 0.537 | 13.39       | 13.64 |  |
| TL  | 0.645      | 0.665 | 16.38       | 16.89 |  |
| TT  | 0.035      | 0.045 | 0.89        | 1.14  |  |
| TW  | 0.410      | 0.420 | 10.41       | 10.67 |  |

### NOTES:

- 1. Dimensions are in inches.
- 2. Millimeter equivalents are given for information only.
- 3. Glass meniscus included in dimension TL and BL.

# **SCHEMATIC**



TERM 1 = ANODE TERM 2 = CATHODE TERM 3 = ANODE